A Survey of GPU-Based Large-Scale Volume Visualization
نویسندگان
چکیده
This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera-, and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e., “output-sensitive” algorithms and system designs. This leads to recent outputsensitive approaches that are “ray-guided,” “visualization-driven,” or “display-aware.” In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we discuss in this survey.
منابع مشابه
State-of-the-Art in GPU-Based Large-Scale Volume Visualization
This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera-, and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods...
متن کاملInteractive Visualization of the Largest Radioastronomy Cubes
3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volum...
متن کاملParallel Volume Rendering for Large Scientific Data
Parallel Volume Rendering for Large Scientific Data by Thomas Fogal University of New Hampshire, December, 2011 Data sets of immense size are regularly generated by large scale computing resources. Even among more traditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be effectively visualized on standard workstations is now commonplace. One ...
متن کاملA Survey of Compressed GPU-Based Direct Volume Rendering
Great advancements in commodity graphics hardware have favored GPU-based volume rendering as the main adopted solution for interactive exploration of rectilinear scalar volumes on commodity platforms. Nevertheless, long data transfer times and GPU memory size limitations are often the main limiting factors, especially for massive, time-varying or multi-volume visualization, or for networked vis...
متن کاملZippy: A Framework for Computation and Visualization on a GPU Cluster
Due to its high performance/cost ratio, a GPU cluster is an attractive platform for large scale general-purpose computation and visualization applications. However, the programming model for high performance generalpurpose computation on GPU clusters remains a complex problem. In this paper, we introduce the Zippy framework, a general and scalable solution to this problem. It abstracts the GPU ...
متن کامل